Colorization Model Comparison

Churong Ji, Tianyi Li, Xiaoying Tang, Yixin Shi
University of Michigan
Ann Arbor, Michigan, MI 48109

{churong, litianyi, xytang, esing}@umich.edu

1. Introduction

Colorization on grayscale images is one of the important
branches of image processing and computer vision with a
wide range of applications. Photographs shot by Polariod
cameras are only preserved in grayscale, but they will be
more vivid and attractive if being colorized. Image coloriza-
tion can also substitute for labor coloring, in fields such as
manga coloring, image editing, and scene modeling, all of
which are time-consuming and laborious. Our interest fo-
cuses on various techniques, mainly using deep learning,
to solve the colorization problem with several metrics pro-
posed for evaluation. We compared three different meth-
ods (GAN using RGB channels, CNN using RGB channels,
CNN using LAB channels) and applied various metrics to
evaluate the models’ performances from different perspec-
tives.

2. Related Works

Image colorization has experienced long-term progress
with numerous significant leaps. Primarily, research solves
the problem using traditional machine learning methods
by matching luminance and texture information [4], or by
scene recognition and segmentation [3]], etc. These methods
focus on traditional image processing techniques, while not
implementing the state-of-the-art deep learning methods,
consequently having low generalization capability. With the
prosperity of the neural networks, researches gradually shift
focuses to deep learning models, from basic fully connected
layers [2], convolutional layers [6], and generative adversar-
ial networks [5]].

Enlightened by the works, we tried to develop three dif-
ferent models for image colorization, respectively a GAN
model, a CNN model with RGB channels, a CNN model
with LAB channels.

3. Method

In image colorization, our goal is to produce a colored
image given a grayscale input image. This problem is chal-
lenging because it is multimodal — a single grayscale im-

age may correspond to many plausible colored images. The
deep neural network has shown remarkable success in auto-
matic image colorization may in part be due to its ability to
capture and use semantic information in colorization. We
built three machine learning models (GAN, CNN Model
with RGB channel, CNN Model with LAB channel) that
automatically turn grayscale images into colored images.

3.1. GAN Model

First of all, we applied the Genarative Adversarial Net-
work (GAN) containing two basic neural network models,
respectively a generator and a discriminator. The generator
is mainly trained to input a grayscale image and produce a
predicted colorized one, while the discriminator is aimed at
differentiating the ground truth from the generated image.
More specifically, the generator is composed of an encoder
and a decoder. The encoder of the generator aims at ex-
tracting the features from the image and concentrate the in-
formation by down-sampling. Visually, the encoder follows
the pipeline (Figure|[I)

Figure 1: Encoder of the generative model.

where each Cy layer composes of a convolution layer,
a batch norm layer, and a leaky ReLU activation layer.
Specifically, the convolution layers consists of a 4 by 4 ker-
nel, a stride of 2, and padding of 1. The leaky ReL.U layer
composes a negative slope of 0.2.

The decoder of the generator aims at regenerate the col-
orized image of the same size with the original grayscale
image, and thus it will upsample the layer resulting from
the encoder. Visually, it follows the pipeline (Figure[2)

Moreover, we connected the symmetric layers with same
size in the encoder and decoder to avoid information loss
due to downsampling in the encoder side. Intuitively, this

deconvé
deconvi deconv2 deconvd deconva deconvs
512 512 512 512
AL Vv 7L L”
64/
128

Figure 2: Decoder of the generative model.

e
.
RN
£

will help shaping the rudimentary output with same textures
and composition, while just lacking in color. A visualiza-
tion of the model follows the pipeline (Figure 3]

h—A

Figure 3: Combined Generative model.

The discriminator follows the pipeline (Figure [4))

3 convl

cornd convd

256 512

64 32 32

256

Figure 4: Decoder of the generative model.

The last convolution layer is followed by a sigmoid func-
tion to map the value into [0, 1]. All values less than 0.5 will
be classified as fake image, otherwise as the ground-truth
image.

To train the model, we defined the loss function as

Lgan = Lce + ALy

where BCE loss is defined as

1 . .
Lpce = —Nzyi ~loggi + (1 — yi) - log (1 — 4ji)

where y is the ground-truth pixel, and g is the predicted
pixel. The L loss is defined as

L1:Z‘ZJ*Q‘

Finally, the hyper-parameter A = 100.

3.2. CNN Model with RGB Channels

Convolutional Neural Network (CNN) is a type of neural
network model which allows us to extract higher represen-
tations for the image content. Though it is usually used for
image classification, in this project, we are curious about
how CNN works on colorization. Partially inspired by the
model in [1]], we implemented a similar 8-layer CNN model
as shown in Figure[5] Here the input is the three channels
of a 256 x 256 grayscale image (all three channels have
the same value). Each conv layer in the figure represents
a block of 2 or 3 repeated conv and ReLU layer, followed
by a BatchNorm layer. We set the dilation of conv as 2
for conv5 and conv6 while use default dilation for other
conv layers. All changes in resolution are achieved through
spatial downsampling or upsampling between conv blocks.
This model directly outputs the RGB channel of predicted
images.

SR

256

Figure 5: Architecture of CNN model with RGB Channels

We want to minimize the the L1 loss between the pre-
dicted RGB value and ground truth. Thus, we chose L1
loss as the loss function when training the model. We op-
timize the loss function with Adam optimizer. We trained
our model on 500 images with learning rate 0.0002, expo-
nential decay rate for the first moment 0.5 and exponential
decay rate for the second moment 0.999. We set the train-
ing batch size 4 and trained the model for 30 epochs. In
each epoch, we did a forward pass, calculated the loss and
updated the weights of the model.

3.3. CNN Model with LAB Channels

LAB color space is another way to represent color with
three channels: L channel represents the lightness of the
color (L = 0 yields black and L = 100 indicates diffuse
white); a represents its position between red and green (neg-
ative values indicate green and positive values indicate red);
b represents its position between yellow and blue (negative
values indicate blue and positive values indicate yellow).

In this model we aim to infer a full-colored image, which
has 3 values per pixel from a grayscale image, which has
only 1 value per pixel (lightness only). For simplicity, we
only worked with images of size 128 x 128, so our inputs
are of size 128 x 128 x 1 (the lightness channel) and our
outputs are of size 128 x 128 x 2 (the other two channels).

Rather than work with images in the RGB format, we
worked with them in the LAB colorspace (Lightness, A, and
B) . This colorspace contains exactly the same information

Input
@HW)

A&B Ground
—>| channels Truth
(2*HW) (2H'W)
7
/
/

colorspace) -

7 y. 7

) | output
Lightness (1"HW)
(1"H'W)

ResNet-18-Gray. Deconvoluntinal Layers

Figure 6: Architecture of CNN with LAB channels model

as RGB, but it will make it easier for us to separate out the
lightness channel from the other two (which we call A and
B). We made a helper function to do this conversion. We
tried to predict the color values of the input image directly
by regression.

Our model is a convolutional neural network!] We first
apply a number of convolutional layers to extract features
from our image, and then we apply deconvolutional layers
to upscale (increase the spacial resolution) of our features.

Specifically, the beginning of our model is ResNet-18,
an image classification network with 18 layers and residual
connections. We modified the first layer of the network so
that it accepted grayscale input rather than colored input,
and we cut it off after the 6th set of layers.

Since we are doing regression, we use a mean squared
error loss function: we minimize the squared distance be-
tween the color value we try to predict, and the true (ground-
truth) color value. We optimize our loss function (criterion)
with the Adam optimizer. We train our model with learning
rate le-2, training batch size 4, and validation batch size 5
in 30 epochs.

As we want images in the LAB space, we first defined a
custom data loader to convert the images. Next we define
transforms for our training and validation data. After val-
idation, we convert the generated images from LAB space
back to RGB.

4. Experiments
4.1. Data Processing

For the dataset, we applied the standard benchmark
dataset Natural Color Dataset (NCD) introduced in [[1]], con-
taining 723 images of 20 categories. We chose it for model
training and experiments because its size is small and it is
easy to visualize and compare results. We split the data set
to 580 training images, 143 testing images. Each image has
size 256 x 512, where the first half is the grayscale image
and the second half is the RGB image as shown in figure[7}
One thing noteworthy is that images are resized to 128 x
256 for the CNN model using RGB channels.

Uhttps://lukemelas.github.io/image-colorization.html

."
—-——
"4

Figure 7: Natural-Color Dataset

4.2. Evaluation
4.2.1 Sample Analysis

The whole dataset is used for either training or testing.
The outputs are presented in figure[§]

P F @&)

(a) Colorized images by GAN with RGB

R R

(b) Colorized images by CNN with RGB

TR

(c) Colorized images by CNN with LAB

Figure 8: Colorization results

For the GAN model, although a majority of the valida-
tion data are performing well, some of them failed to gener-
ate the output with similar colorization. One of the illustra-
tions is the left-most peach in figure [8al which is colorized
major in purple. This might result in the fact that peach is
reasonably similar with plums in grayscale, and the GAN
model misclassified the peach into a plum. On the other
hand, since we are utilizing a combination of BCE loss and
L loss, instead of penalizing the RGB difference strictly,
the model tolerates the deviation and outputs a plum-like
colorization.

Our predicted result on CNN model with RGB channel
has its outputs blurrier than inputs. We guess this is because
the downsampling process overlooks some features of the
image while the upsampling process fails to recover them.

The mean squared error loss function we implemented
in the CNN model using LAB channels is slightly problem-
atic for colorization due to the multi-modality of the prob-
lem. For example, if a gray fruit could be red or blue, and
our model picks the wrong color, it will be harshly penal-
ized. As a result, our model will usually choose desaturated
colors that are less likely to be “very wrong” than bright,
vibrant colors.

4.2.2 MSE and SSIM Scores

We compare the performances of the three models from
three perspectives: training loss curve, mathematical met-
rics (Mean Squared Error and Structural Similarity Index),
and human evaluation.

Firstly, as shown in figure[9] we observe the GAN model
converges the fastest and comparatively smoothly while the
CNN model using LAB channels converges but its training
losses oscillate at the last epochs. The performance of the
CNN model using RGB channels is between the other two
models.

G 41 oss vs terations N los v, erations for N model
Ll §°
ol — T .

Figure 9: Training losses: GAN with RGB vs CNN with
RGB vs CNN with LAB

Moreover, we select Mean Squared Error (MSE) and
Structural Similarity Index (SSIM) to evaluate the quality
of the colorized outputs. MSE gives straightforward eval-
uation of the colorization by comparing pix-to-pix values
while SSIM can provide insights on structural information.
Furthermore, the lower the MSE is, the closer the predic-
tion image to the ground truth is, and the higher the SSIM
is, the better the prediction image is in human perception
according to this metric. As shown in table [I} the CNN
model using LAB channels performs the best based on both
metrics. However, the CNN model using RGB channels re-
ceives the lowest scores, for which we guess is because of
its generated images’ blurry edges as shown in figure 8]

MSE | SSIM
GAN withRGB | 3.16 | 0.81
CNN withRGB | 6.39 | 0.68
CNN with LAB | 1.53 | 0.85

Table 1: Model Performances based on MSE and SSIM

4.2.3 Human Evaluation

We included human evaluation to access the outputs. We
saved the outputs of 50 same input images from the three
models and randomly shuffled the order. Five human grader
were invited to grade those works with a scale from 1 to
5, where 1 means obviously artificial and 5 indicates the
image looks genuine. The results are presented in table [2]
from which we see a contradiction of the grading based on
mathematical metrics and human graders. Evaluated by the
best model by MSE and SSIM, the CNN model using LAB
channels is only scored 1.582 while the GAN model is rated
as the best. From this we find the previous two mathemati-
cal metrics may not generalize well to our tasks. Moreover,
we guess GAN receives the highest score because its mech-
anism tries to deceive the discriminator, just as trying to
deceive human graders in this task.

Score
GAN with RGB | 3.613
CNN with RGB | 2.448
CNN with LAB | 1.582

Table 2: Model Performances according to human graders

5. Conclusion

In this work, we compared three different methods:
GAN using RGB channels, CNN using RGB channels and
CNN using LAB channels. Then, we applied various met-
rics to evaluate the models’ performances from different
perspectives. The CNN model using LAB channels receives
the highest MSE and SSIM scores while the GAN model us-
ing RGB channels is evaluated the best by human graders,
from which we observe that the mathematical metrics failed
to generalize to our tasks. In the future, we plan to train
our models on more complex datasets and research on how
transfer learning works in those models. Moreover, we ex-
pect to devise metrics that align with human perceptions so
that the contradiction between the scores by metrics and hu-
man graders can be addressed.

References

(1]

(2]

(3]

(4]

(5]

(6]

Saeed Anwar, Muhammad Tahir, Chongyi Li, Ajmal Mian,
Fahad Shahbaz Khan, and Abdul Wahab Muzaffar. Image col-
orization: A survey and dataset. 2020.

Z.Cheng, Q. Yang, and B. Sheng. Deep colorization. IEEE In-
ternational Conference on Computer Vision, pages 415423,
2015.

A. Levin, D. Lischinski, and Y. Weiss. Colorization using op-
timization. Proceedings of International Conference on Com-
puter Graphics and Interactive Techniques, pages 689-694,
2004.

T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. 29th annual conference on Computer
graphics and interactive techniques, pages 277-280, 2002.
Y.Ci, X.Ma, Z.Wang, H.Li, and Z.Luo. User-guided deep-
anime line art colorization with conditional adversarial net-
works. 26th ACM international conference on Multimedia,,
pages 1536-1544, 2018.

R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. European conference on computer vision, pages 649—
666, 2016.

